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ABSTRACT

Ensemble forecasts are generated with and without the assimilation of near-surface observations from a portable, mesoscale network of
StickNet platforms during theVerification andOrigins of Rotation in Tornadoes EXperiment – Southeast (VORTEX-SE). Four VORTEX-SE
intensive observing periods are selected to evaluate the impact of StickNet observations on forecasts and predictability of deep convection
within the southeast United States. StickNet observations are assimilated with an experimental version of the High Resolution Rapid
Refresh Ensemble (HRRRE) in one experiment, and withheld in a control forecast experiment. Overall, StickNet observations are found
to effectively reduce mesoscale analysis and forecast errors of temperature and dewpoint. Differences in ensemble analyses between the
two parallel experiments are maximized near the StickNet array and then either propagate away with the mean low-level flow through the
forecast period or remain quasi-stationary, reducing local analysis biases. Forecast errors of temperature and dewpoint exhibit periods
of improvement and degradation relative to the control forecast, and error increases are largely driven on the storm scale. Convection
predictability, measured through subjective evaluation and objective verification of forecast updraft helicity, is drivenmore bywhen forecasts
are initialized (i.e., more data assimilation cycles with conventional observations) rather than the inclusion of StickNet observations in
data assimilation. It is hypothesized that the full impact of assimilating these data is not realized in part due to poor sampling of forecast
sensitive regions by the StickNet platforms, as identified through ensemble sensitivity analysis.

Significance statement. In this work, observations from
a portable observation network during a large-scale field
campaign are incorporated into numerical weather pre-
diction models to improve forecasts of severe storms and
their attendant hazards: tornadoes, hail, and severe wind.
Observations are gathered from StickNet platforms (de-
veloped at Texas Tech University), which were placed
throughout northern Alabama and southern Tennessee
during the project. Over four cases examined in this
manuscript, simulations that include StickNet observations
are improved at earlier times, but forecast impacts at later
times are varied. The observations improve near-surface
temperature and moisture forecasts, but don’t routinely in-
fluence forecasts of the actual storms, likely because the
most sensitive regions that would improve forecasts were
not well sampled by the StickNets. Future work should
evaluate how more frequent observations could improve
forecasts, beyond what was considered here (i.e., one ob-
servation per hour).
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1. Introduction

The spatial climatology of severe storm hazards and
their corresponding environments across the United States
(U.S.) generally focuses within the Great Plains and south-
east U.S. (e.g., Horgan et al. 2007; Guyer and Dean 2010;
Dixon et al. 2011; Gensini and Ashley 2011; Cintineo
et al. 2012; Gensini et al. 2020). Whereas particular
attention has been given to severe thunderstorms across
the Great Plains over the last few decades through vari-
ous large-scale field programs, including the Verification
and Origins of Rotation in Tornadoes EXperiment (VOR-
TEX; Rasmussen et al. 1994), VORTEX2 (Wurman et al.
2012), the Mesoscale Predictability EXperiment (Weis-
man et al. 2015), and the Plains Elevated Convection
At Night project (Geerts et al. 2017), less attention has
been provided to the southeast thunderstorm environment.
The lack of attention is particularly noteworthy since the
Southeast is prone to more frequent and less predictable
high-shear, low-CAPE (HSLC) environments preceding
severe weather events (Davis and Parker 2014; Sherburn
and Parker 2014; Sherburn et al. 2016; King et al. 2017),
a disproportionate frequency of nocturnal storms (Ash-
ley 2007; Kis and Straka 2010) and long-track tornadoes
(Dixon et al. 2011), forested areas that hinder line-of-sight
(Ashley 2007), complicated stormmodes (e.g., Smith et al.
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2012), an ill-defined “storm season” (e.g., Smith et al.
2012), and population vulnerabilities (e.g., mobile homes,
poverty, and elderly populations; Ashley 2007; Wallace
et al. 2015; Childs et al. 2018). Furthermore, recent work
has hinted at the possibility that severe thunderstorm haz-
ards have become more frequent across the Mississippi
River Valley and southeast U.S. over the last two decades
(Gensini et al. 2020), which suggests improving severe
storm hazard forecasts in these regions could be extremely
beneficial, greatly reducing the impacts storms and their
attendant hazards have on the population and society.

Recently, VORTEX - Southeast (VORTEX-SE) was
birthed to improve the understanding of physical processes
that contribute to an enhanced risk of severe thunderstorms
and associated hazards (e.g., Smith et al. 2012) in the south-
east U.S. as well as human behavior that may explain the
relatively higher mortality due to severe hazards in this
region (e.g., Ashley 2007). A number of meteorological
observing assets – e.g., mobile Doppler radars, rawinson-
des, instrumented towers, and profilers (e.g., Lee et al.
2019; Markowski et al. 2019; Tanamachi et al. 2019; Lyza
et al. 2020) – were deployed during field campaigns in
the springs (March and April) of 2016 and 2017, as well
as during the cold seasons (November – April) of 2018
and 2019, to address the project’s physical science objec-
tives. In support of VORTEX-SE, a fleet of portable, near-
surface in-situ sampling platforms – StickNets (Schroeder
and Weiss 2008; Weiss and Schroeder 2008) – were de-
ployed by Texas Tech University to sample near-storm en-
vironmental heterogenieties (e.g., McDonald and Weiss
2020) and supplement the existing observational network
in northern Alabama and southern Tennessee. Whereas
StickNet applications in rapid-deployment scenarios have
been well documented – primarily sampling supercell cold
pools and outflow wind gusts (e.g., Skinner et al. 2011,
2014;Weiss et al. 2015; Gunter et al. 2017) – their utility as
a portable, quickly-deployed, and stationary near-surface
sampling network for severe storm environments is rel-
atively new. The placement of a dense, high-frequency
in-situ observation network during VORTEX-SE, sam-
pling a relatively data-sparse region, provides a unique
and valuable dataset to investigate forecast improvements
of severe storms and their hazards in the southeastern U.S.
Near-surface observations have immense value for con-
vection forecasts, demonstrated by a number of studies
(e.g., Sobash and Stensrud 2015; Chen et al. 2016; Madaus
and Hakim 2017), and it is hypothesized that the portable
StickNet fleet provided significant value to forecasts of
severe hazards during VORTEX-SE. This paper will docu-
ment and investigate StickNet-observation impacts on se-
vere storm forecasts during VORTEX-SE, and quantify
forecast changes when observations are assimilated with a
numerical weather prediction model.

In order to properly evaluate these impacts, explicit sim-
ulations of deep convection and associated hazards (e.g.,

tornadoes, hail, and wind) are needed, necessitating the
use of convection-allowing models (CAMs). CAMs uti-
lize small horizontal grid spacing to explicitly simulate
convective processes (Bryan et al. 2003). The last decade
has seen a proliferation of CAMs, resulting in markedly
improved forecasts of severe hazards across the U.S. (e.g.,
Done et al. 2004; Kain et al. 2006; Clark et al. 2010). Addi-
tionally, coupling CAMs with sophisticated data assimila-
tion techniques has yielded improved representation of the
near-storm environment, improving the subsequent fore-
casts of severe hazards (e.g., Stensrud et al. 2013). Gen-
erally, in-situ observations have been found to contribute
to this improvement through a more accurate representa-
tion of the mesoscale environment (e.g., Stensrud et al.
2009; Wheatley and Stensrud 2010; Wheatley et al. 2012;
Knopfmeier and Stensrud 2013; Ha and Snyder 2014; Torn
2014; Coniglio et al. 2016; Hitchcock et al. 2016), moti-
vating the incorporation of StickNet observations with a
CAM in this study.

The advent of ensemble prediction systems (EPSs) at
convection-allowing resolutions has further improved fore-
cast skill of deep convection and associated hazards (e.g.,
Clark et al. 2009; Kain et al. 2013; Schwartz et al. 2015;
Wheatley et al. 2015; Jones et al. 2016; Sobash 2016).
Whereas deterministic CAM solutions provide only one
snapshot of a future atmospheric state, EPSs of sufficient
size provide a representative measure of forecast uncer-
tainty, which can be extremely valuable to real-time fore-
casters and a statistical tool for researchers to assess the
relative predictability of a particular event (e.g., Nielsen
and Schumacher 2016) or series of events. As comput-
ing power and capability have risen over the past few
decades, real-time convection-allowing ensembles (CAEs)
have been developed at universities (e.g., Manser and An-
cell 2020), research centers (e.g., Xue et al. 2007; Schwartz
et al. 2015), and operational weather centers (e.g., Hagelin
et al. 2017; Jirak et al. 2018; Klasa et al. 2018). Op-
erationally, NOAA’s High Resolution Ensemble Forecast
(HREF; Jirak et al. 2018) system, which combines a diverse
set of deterministic convection-allowing models, produces
skillful forecasts of high-impact weather including severe
thunderstorms (Jirak et al. 2012; Roberts et al. 2020). Re-
search at NOAA’s Global System Laboratory has focused
on developing data-assimilation and forecasting capabili-
ties with a single-model CAE system, based on the High
ResolutionRapidRefresh (HRRR)modeling infrastructure
(Alexander et al. 2016; Dowell et al. 2021).

For the purposes of this work, the single-model CAE in
development at NOAAwill be utilized to demonstrate how
the portable StickNet array of near-surface observations
can improve forecasts of severe storms in the southeast
U.S., while simultaneously informing best practices for fu-
ture development of an operational CAE. The rest of the
paper is laid out as follows: the StickNet platforms, mod-
eling system, and analysis methods to quantify forecast
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improvements are detailed in Section 2; ensemble analyses
and forecasts from each case are subjectively and objec-
tively assessed in Section 3; and discussion on forecast
sensitivity is reserved for Section 4. A summary and dis-
cussion of the results is presented in Section 5, along with
implications for future VORTEX-SE project deployments.

2. Methods

a. StesoNet

During the 2016 and 2017 spring field phases of
VORTEX-SE, 16 StickNet (e.g., Fig. 1) platforms were
positioned with 40 km spacing across southern Tennessee
and northern Alabama (Fig. 2)– hereafter, referred to as
the “StesoNet” – in an effort to sample thunderstorm cold
pool properties as well as the mesoscale environment pre-
ceding these storms. The remaining eight platforms of
the StickNet fleet were used for rapid deployments in ad-
vance of targeted storms. During the 2018-2019 campaign
(Meso18-19), the eight rapid-deployment StickNets were
inserted into the stationary network to extend coverage
southward towards central Alabama and improve sampling
resolution in the central portion of the domain.

Each StickNet probe is equipped to measure pressure,
wind speed and direction, temperature, and relative hu-
midity at 10-Hz sampling frequency, approximately 1.5
m above the surface. The computing hardware and pres-
sure sensor are mounted inside a Campbell Scientific data
acquisition box with a small battery for < 12 hour de-
ployments. An external battery box can also be deployed
that extends the StickNet’s sampling lifetime to > 24 hours
(typically less than five days), which has been advanta-
geous for prolonged deployments during landfalling hur-
ricanes (e.g., Zachry et al. 2013; Giammanco et al. 2016;
Alford et al. 2019; Fernandez-Caban et al. 2019). During
VORTEX-SE, a 100 W solar panel was attached to each
probe (see Fig. 1) in an effort to provide continuous power
to the StesoNet array and allow uninterrupted sampling
of multiple convective events across each season of sam-
pling. Specific details regarding instrument characteristics
are provided by Skinner et al. (2011).

Biases for all StickNet probes were determined prior to
and after field campaigns through mass tests, in which all
probes were deployed in close proximity in an open area
for multiple days. An arithmetic average was then taken
over all probe observations during a selected period (e.g.,
clear diurnal pattern) to assess the bias characteristics for
each instrument (i.e., temperature, pressure, and relative
humidity) on each probe. Mass tests were conducted on
either end of the observing periods to determine if any
biases changed during transport, deployment, or during
the sampling periods. The raw observations from each
StickNet platform obtained during the field project were
then corrected based on their respective biases determined
through the mass tests (to the nearest 0.5 K, 0.5 hPa, and

0.5 % for temperature, pressure, and relative humidity ob-
servations, respectively). When biases appeared to change
drastically between pre-deployment and post-deployment
mass tests, the mass-test biases were averaged together
and again rounded. These bias-corrected observations are
provided to the ensemble modeling system for data assim-
ilation, which has an additional quality control procedure
described in the following subsection, so no subjective or
objective quality control is conducted to remove erroneous
StesoNet observations.

b. Modeling Configuration and StickNet Assimilation

In an effort to improve forecasts of deep convec-
tion and severe hazards across the contiguous United
States (CONUS), the NOAA’s Global Systems Labora-
tory has been developing convection-allowing, ensemble-
based data-assimilation and forecasting methods in an ex-
perimental system. This modeling system effectively ex-
tends the capabilities of the HRRR operational model to
an ensemble framework, known as the HRRR Ensemble
(HRRRE; Dowell et al. 2021). HRRRE forecasts are made
with WRF-ARW version 3.9 on one-way nested domains
with 15 and 3-km grid spacing (Fig. 2) and 36 ensemble
members. The 3-km grid spacing of the full-CONUS in-
ner domain allows for explicit simulation of deep, moist
convection (Bryan et al. 2003). Observations are assimi-
lated hourly into the 36-member ensemble with the Grid-
point Statistical Interpolation (GSI) ensemble Kalman fil-
ter (EnKF; Evensen 1994) software.

During select VORTEX-SE intensive observing peri-
ods (IOPs) analyzed in this work, the HRRRE system is
initialized at 0900 UTC the day of an event. The initial
atmospheric ensemble-mean state comes from the 0900
UTC Rapid Refresh (RAP) model analysis, interpolated to
the 15- and 3-km HRRRE grids (Dowell et al. 2021). The
36 HRRRE atmospheric initial conditions are produced by
adding to this initial mean, perturbations from the first 36
members of a 9-h forecast from the NOAA Global Data
Assimilation System (GDAS). The land-surface state in all
36 members is initialized from the 0900 UTC HRRR anal-
ysis, without perturbations. Boundary conditions come
from a Global Forecast System (GFS) forecast, and ran-
dom perturbations are added to the boundary conditions
for each ensemble member. The 15-km outer HRRRE grid
exists so that these random perturbations can evolve into
more physically-consistent perturbations before reaching
the inner 3-km grid.

To forecast an IOP event, data assimilation is performed
hourly with the GSI-EnKF beginning at 1000 UTC and
ending at 1800 UTC on both domains. Ensemble member
backgrounds come from 1-hr forecasts propagated from
the previous analysis; the first ensemble member back-
grounds are 1-hr forecasts generated from the perturbed
initial states created from the RAP and GDAS described
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earlier. Conventional observations, such as those from
METAR, aircraft, radiosondes, and buoys, are assimilated
on both domains, and radar reflectivity from the WSR-
88D network is included during assimilation on the 3-km
inner domain. Assimilated observations update the model
state variables of horizontal wind, temperature, water va-
por, and hydrometeor mixing ratios (i.e., cloud water, rain,
snow, and graupel). A Gaspari-Cohn localization function
(Gaspari and Cohn 1999) is employed to limit observa-
tion impacts on state-variable covariances during assim-
ilation. Conventional observations have horizontal and
vertical localization radii of 300 km and 0.5 scale height,
respectively, which denotes when observation weights re-
duce to zero. Horizontal and vertical localization radii of
18 km and 0.5 scale height, respectively, are applied to
radar observations. Every hour, each member is checked
for erroneous clouds that might have developed where
satellite observations indicate clear conditions; erroneous
clouds are removed by resetting cloud water and cloud ice
to zero throughout the column and reducing the relative
humidity to 85% at any locations where clouds were re-
moved (Dowell et al. 2021). While ensemble spread is ini-
tially generated via random perturbations, it is maintained
through a relaxation-to-prior-spread technique after assim-
ilation each hour (Whitaker and Hamill 2012). Stochastic
methods for increasing ensemble spread were not included
in HRRRE for the current study, thus simplifying inter-
pretations about how forecast perturbations are related to
initial-condition perturbations.

At select times during an IOP (e.g., 1200, 1500, and
1800 UTC), ensemble analyses are used to generate 36-
member forecasts that encompass the convective event.
The aforementioned data assimilation cycling and ensem-
ble forecast procedure serves as the control system (CTRL)
for evaluation of forecast skill improvement. A paral-
lel forecast system (EXP) is generated that assimilates
bias-corrected, 1-minute averaged StesoNet observations
of temperature, pressure, and specific humidity at the top
of each hour (1000–1800 UTC) from each station; 16 and
24 stations are included in data assimilation cycles for
the 2017 and Meso18-19 IOPs, respectively, as long as
each station was operating. The StickNet relative humid-
ity observations are converted to specific humidity for the
GDAS assimilation. Only one observation of temperature,
pressure, and humidity is used from each StickNet station
during each assimilation cycle valid at the assimilation
time. GDAS will reject a particular observation if it falls
outside of three standard deviations of the background en-
semble distribution, which effectively eliminates missing
data points and disregards heavily biased observations, re-
gardless of source (i.e., StesoNet or METAR). Forecasts
are generated from the EXP analyses and then compared
to CTRL forecasts initialized at the same time.

c. Analysis Methods

To evaluate changes in forecast skill due to StesoNet
observation assimilation, subjective and objective analy-
ses are employed on the ensemble analyses and forecasts
of environmental and storm-specific variables (e.g., 2-m
temperature and updraft helicity) from the CTRL and EXP
ensemble systems. The analysis fit to observations (here-
after referred to as analysis error) is determined for both
EXP and CTRL analyses of temperature and dewpoint by
calculating absolute errors (AE) at individual observing
sites, which includes the regular automatic surface observ-
ing system (ASOS) station network and StesoNet array.
Changes in absolute error (∆AEi) from the CTRL to EXP
simulation at a particular observing location are repre-
sented as the CTRL simulation AE (AEi,CTRL) subtracted
from the EXP simulation AE (AEi,EXP),

∆AEi = AEi,EXP−AEi,CTRL = |(FEXP
i −Oi)|− |(FCTRL

i −Oi)|,
(1)

where Fi is the forecast magnitude with respect to the EXP
and CTRL simulations (FEXP

i and FCTRL
i , respectively)

and Oi is the observation at a station i. Forecast and
analysis errors of both simulations are assessed through
domain-wide (33-36◦N and 83-90◦W) root mean squared
error (RMSE) statistics computed against the full near-
surface observation dataset (i.e., including the StesoNet
array). RMSE statistics are calculated using the formula

RMSE =

√√√
1
M

M∑
i=1
(Fi −Oi)

2, (2)

where M represents all stations considered in the domain.
Through this quantitative analysis, the spatial and temporal
characteristics of analysis and forecast errors across the two
prediction systems can be assessed to determine the relative
value of StesoNet observations in improving analyses and
subsequent forecasts.

Additionally, forecast differences of storm-centric vari-
ables are quantified through probabilistic verification tech-
niques. Specifically, changes in ensemble forecast proba-
bilities of 1–6 km updraft helicity (UH) exceeding a thresh-
old are verified against local storm reports (LSRs) of severe
hail, wind, and tornadoes via theBrier Score to assess if any
adjustments are made to the forecast from StesoNet obser-
vations that improve localized prediction of severe-storm
hazards. Brier Scores will decrease (i.e., skill increases)
in areas where forecast probabilities increase, coincident
with a LSR. However, Brier Scores do not capture the un-
derlying skill of CTRL, which may be sufficient given the
relative density of LSRs and CTRL forecast probabilities.
Moreover, the limited number of cases explored in this
work hinders a more robust assessment of forecast skill,
thus Brier Scores should be considered just one method to
explore forecast skill.
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Forecast probabilities are assembled via the neighbor-
hood maximum ensemble probability (NMEP) method
(Schwartz and Sobash 2017), whereby member forecasts
of hourly-maximumUH are filtered spatially (21 x 21 grid-
point box) for UH exceeding 50 m2s−2 and each forecast
is converted to a binary yes/no UH-exceedance field on
the native HRRRE domain. The resulting ensemble is
then averaged and the ensemble mean field is smoothed
using a Gaussian kernel with a smoothing length scale
of 40 km (i.e., 10 grid points). Archived LSRs are ob-
tained from Iowa State University‘s Iowa Environmental
Mesonet (IEM) geographical information system archive
(https://mesonet.agron.iastate.edu/request/gis/) and grid-
ded such that all grid points within 40 km of an LSR are
given a binary magnitude of 1. Brier Scores are calculated
in objectively-defined regions defined by the gridded LSRs
and NMEP-based ensemble forecast probabilities greater
than five percent (approximately two ensemble members)
from either forecast simulation. In this way, the Brier
Score calculations are restricted to only portions of the
analysis domain where hazards were reported or the en-
semble systems predicted UH, and the vast portions of the
domain where no storms occurred do not bias the Brier
Scores. The predictability of each event is also assessed by
comparing the overall skill of CTRL forecasts initialized
at two lead times prior to the convective event (e.g., 1200
and 1800 UTC initialized forecasts) to forecasts made by
the EXP system; the 1500 UTC-initialized forecasts are
omitted in this evaluation. The forecasts are evaluated
subjectively as well in an effort to describe how StesoNet
observations augment the UH forecast probabilities.

Additionally, objective measures of predictability are
employed through the application of ensemble sensitivity
analysis (ESA; Ancell and Hakim 2007; Hakim and Torn
2008; Torn and Hakim 2008). ESA is a regression tool
that takes a vector of scalar forecast metric values within a
specified region (e.g., composite reflectivity) and regresses
these estimates back to earlier model states to estimate
how small changes in the initial conditions will influence
the forecast. ESA has been used extensively at synoptic
scales (e.g., Torn and Hakim 2009; Garcies and Homar
2009, 2010; Torn 2010; Chang et al. 2013; McMurdie and
Ancell 2014; Torn and Cook 2013; Zheng et al. 2013; Xie
et al. 2013; Brown and Hakim 2015; Ancell 2016) and has
become increasingly popular for convective applications
(e.g., Bednarczyk andAncell 2015; Torn andRomine 2015;
Hill et al. 2016; Berman et al. 2017; Torn et al. 2017;
Hill et al. 2020). In this work, ESA-based observation
targeting methods (e.g., Ancell and Hakim 2007; Hill et al.
2020) are applied to assess where hypothetical temperature
and moisture observations would contribute to reducing
CTRL forecast metric variance later in the forecast, and
these objectively-defined regions are compared to where
the StesoNet sampled during convective events. The ESA-
based targeting formula for UH forecast variance change

(δσ2
i,UH ) is defined by

δσ2
i,UH =

1
N−1

∑N
n=1(xi − x̄i)(R− R̄)

1
N−1

∑N
n=1(xi − x̄i)2+σ2

ob

, (3)

where the numerator in (3) represents the covariance be-
tween a state variable (e.g., 2-m temperature) vector xi at
grid point i and forecast metric vectorR and the denomina-
tor is a summation of the variance in x and a hypothetical
observation variance (σ2

ob
), typically defined by instru-

ment error characteristics; the observation variance is set
to 1 K for both temperature and dewpoint hereafter.

For the ESA, UH is used as the forecast metric and the
forecast region used to calculate ensemble estimates is ob-
jectively selected based on UH ensemble variance. UH is
particularly useful as a forecast metric since it is generally
regarded as a good predictor of strong rotating updrafts
and various severe hazards (e.g., Sobash et al. 2011). Fol-
lowing Torn and Romine (2015), the forecast metric region
is determined by considering all grid points that equal or
exceed 60% of the maximum UH standard deviation over
a period of interest that represents large ensemble vari-
ability; the objective procedure is described below. This
objective region-selection procedure eliminates subjectiv-
ity and focuses the ensemble sensitivity analysis on where
the forecast is most uncertain, and has been shown to work
well for convective regimes (e.g., Torn and Romine 2015;
Berman et al. 2017; Torn et al. 2017).

The maximum UH of each ensemble member forecast
across a 3-hour time window is smoothed spatially with a
Gaussian kernel and a spatial length scale of 42 km. En-
semble standard deviation is calculated from the smoothed
UH member fields and a region is demarcated where the
standard deviation exceeds 60% of the maximum standard
deviation; this is the response region. The response vector
R for ESA calculations is themean 3-hrmaximumUHover
the response region of each ensemble member’s forecast.
Torn et al. (2017) noted in their study that the sensitiv-
ity signals were relatively insensitive to the time window
and manner of smoothing for the response variable, which
may have altered the size of the response region. The
ESA-based observation targeting regions are calculated
with respect to hypothetical 2-m temperature and dewpoint
observations. The ESA predictability analysis identifies
target regions within the CTRL forecast system that are
deemed critical to forecast error growth. Combined with
the knowledge of the StesoNet domain, the target regions
can be evaluated to determine potential reasons why EXP
forecasts are improved or degraded, and in particular if the
StesoNet domain happened to sample a sensitive forecast
region that propagated through the stationary network.

3. Case Analysis

Four retrospective cases are evaluated herein – two each
from the 2017 and Meso18-19 field programs – in which
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StesoNet observations are included and withheld from data
assimilation with the HRRRE. The four IOPs are asso-
ciated with events and forecasts beginning on 22 April
2017 (22Apr), 30 April 2017 (30Apr), 23 February 2019
(23Feb), and 14 March 2019 (14Mar). Both an objec-
tive and subjective evaluation is incurred to assess forecast
improvement or degredation from assimilating StesoNet
observations and their role in augmenting predictability of
these severe weather events.

a. Near-surface errors

Averaged RMSE is calculated across the domain (e.g.,
Fig. 3) for the CTRL and EXP ensemble analyses. Anal-
yses are generated through hourly data assimilation from
1000 – 1800 UTC for each case and the resulting CTRL
RMSE is subtracted from the EXP RMSE for temperature
(Table 1) and dewpoint (Table 2). Across all analyses and
cases, RMSE differences are smaller than 0.5 K for both
temperature and dewpoint. However, RMSE differences
for a number of assimilation cycles, while small, are statis-
tically significant (bolded magnitudes in Tables 1 and 2).
Analysis temperature RMSE is consistently reduced the
most in the 23Feb and 14Mar cases, while analysis dew-
point RMSE is reduced most significantly in the 23Feb
and 30Apr cases. Both the 23Feb and 14Mar cases exhibit
more frequent cycles where the RMSE differences are sta-
tistically significant (e.g., 14Mar from 1000 to 1700 UTC,
Table 1) than the other two cases.

The spatial distribution of analysis errors as well as anal-
ysis differences (EXP - CTRL) are examined through dot
plots at select analysis times (Figs. 3 – 6). StesoNet obser-
vations are able to adequately adjust the ensemble analyses
towards the observations (blue dots in e.g., Figs. 3a, 4d,
5c, 6a), with minimal instances of error increases (red
dots in e.g., Fig. 6b), particularly at early analysis cycles.
Large swaths of ensemble mean temperature and dewpoint
analysis changes are evident across the StesoNet domain,
indicating StesoNet observation assimilation is adjusting
the mesoscale environment (e.g., Figs. 3a,b,h, 4c-d, 5a-
d). At later analysis times, however, the combined effects
of multiple assimilation cycles and developing convection
contribute to more frequent small-scale analysis errors be-
tween the CTRL and EXP simulations (e.g., Figs. 4e-h,
5e-h, 6g,h); the StesoNet is not able to correct small-scale
errors due to, for example, developing cold pools. For
example, two StesoNet locations and one non-StesoNet lo-
cation in northern Alabama at 1800 UTC in 30Apr (red
rectangle in Fig. 4g) have lower temperature errors within
an advancing cold pool due to StesoNet assimilation, while
the same stations have both increases and decreases in dew-
point errors at the same time (red rectangle in Fig. 4h).
In some instances, small-scale errors are present at early
analysis cycles as well (red rectanlges in Figs. 3b,d, Figs.
6c,d), which may bemore indicative of poor representation

of the near-surface and boundary layer environment in the
ensemble simulations before daytime heating commences
and the boundary layer deepens.

In the 22Apr case, StesoNet observations reduce anal-
ysis dewpoint in southern Tennessee and simultaneously
increase dewpoints in north-central Alabama (Fig. 3b). At
1400, 1600, and 1800 UTC, the dewpoint increase is more
robust across northern Alabama, and it remains quasi-
stationary (Figs. 3d,f,h). In this instance, the StesoNet
observations appear to be correcting a persistent low dew-
point bias in the CTRL analyses; interestingly, the persis-
tent adjustment in the background analysis does not neces-
sarily translate to improvedAEs at 1400UTC (Fig. 3b), but
does reduce errors at 1800 UTC in northwestern Alabama
(Fig. 3h). This result further suggests the assimilation of
StesoNet observations adjusts the mesoscale environment
more than small scales, which are also heavily influenced
by the local topography (Fig. 2). Similar quasi-stationary
analysis adjustments are seen in the 23Feb case (Figs. 5a-
d), which gradually shrink with later analysis cycles (Figs.
5e-h). In contrast, analysis differences at 1400 UTC in the
30Apr case (Figs. 4c,d) propagate northward into northern
TN in later assimilation cycles (Figs. 4e-h); the assimilated
StesoNet observations are having a downstream impact in
future assimilation cycles.

Select analyses at 1200, 1500, and 1800UTC are used to
initialize ensemble free forecasts (i.e., no data assimilation
after forecast begins) for each IOP. As in the above analy-
sis, ensemble mean forecasts of temperature and dewpoint
initialized from the CTRL analysis are subtracted from
identical forecasts initialized from the EXP analyses; the
CTRL AEs are also substracted from EXP AEs to evaluate
how forecast error changeswhen StesoNet observations are
assimilated. Qualitatively, the spatial distribution of fore-
cast errors and environment differences are complex after a
few hours of forecast integration, mainly due to convection-
induced cold pools (not shown). The domain-wide RMSEs
are averaged across each forecast to provide a quantitative
assessment of StesoNet observation impacts, which largely
averages out small-scale errors (Fig. 7). Forecast RMSEs
are reduced for both 2-m temperature and 2-m dewpoint in
22Apr when StesoNet observations are assimilated (Figs.
7a,b) across most forecast hours, and differences remain
statistically significant through 2300 UTC for both the
1200 and 1500 UTC-initialized forecasts. On the other
hand, only the 1500 and 1800 UTC initialized forecasts
for 30Apr have reduced 2-m temperature forecast errors
at multiple hours between 1800 - 2300 UTC (Fig. 7c);
ensemble mean dewpoint forecast errors remain relatively
unchanged in 30Apr, except for a few early hours in the
1200 UTC-initialized forecast (Fig. 7d). Both temperature
and dewpoint forecast errors increase beyond 1400 UTC
in the 23Feb case (Fig. 7e,f), even though early forecast
hours just after forecast initialization have reduced errors.
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The 14Mar case features initial reductions in 2-m tem-
perature forecast errors for 1200 and 1500 UTC forecast
initializations, which slowly erode later into the forecast
(Fig. 7g). In contrast, dewpoint errors increase the first
few forecast hours from the 1200 UTC-initialized forecast,
but are primarily decreased in the 1800 UTC-initialized
forecast (Figs. 7h).

b. Forecast distributions

Changes in ensemble forecast distributions of UH are in-
spected to evaluate how StesoNet observations are impact-
ing the spatial and temporal placement of severe storms
and associated hazards. Only the 1800 UTC-initialized
forecasts from each IOP are considered herein for brevity.
Initially in 22Apr, StesoNet observations contributed to
reducing probabilities of UH in northeast Mississippi at
2000 UTC where one tornado and two instances of severe
hail were reported in the previous hour (Fig. 8b). This
prominent area of reduced probability propagated through
the forecast period (Figs. 8c-f) and seemingly missed
all LSRs associated with an individual, prolonged severe
storm (not shown). In contrast, at 2200 and 2300 UTC the
StesoNet observations contributed to increasing forecast
probabilities of UH in northeast Tennessee and along the
Alabama-Tennessee border (Fig. 8d,e) which coincided
with severe hail and wind reports. Brier Scores are also
calculated across relevant portions of the domain where
UH is forecast by either the EXP or CTRL simulation or
where LSRs were recorded (e.g., purple outline in Fig. 8a).
Brier Scores across all forecast times illustrate that CTRL
and EXP forecast skill are nearly indistinguishable, and
StesoNet observations do not appear to have a significant
impact on aggregate UH forecast skill.

The 30Apr case features a number of similarities as
the 22Apr case regarding changes to the forecast distribu-
tions. At 2000 UTC, LSRs were scattered across northern
Alabama and central Tennessee, coincident with areas of
reduced and enhanced probabilities, respectively, due to
StesoNet assimilation (Fig. 9). The area of enhanced
probabilities propagates north-northeastward through the
forecast period (Figs. 9b-d) and tracks with a pocket of
continuous LSRs; capturing these reports in the forecast
distribution has some impact on Brier Scores, but the mag-
nitude is small (0.01 skill difference). The area of reduced
UH probabilities in northern Alabama at 2000 UTC (Fig.
9a) also moves northward, as the LSRs wane by 2200 UTC
(Figs. 9b,c). At later forecast hours (e.g., 0000 UTC), the
assimilation of StesoNet observations drastically reduces
probabilities of severe hazards in northeast Alabama and
east-central Tennessee, where no LSRs were recorded; the
StesoNet observations helped to remove any false alarm in
these areas. These forecast improvements are also evident
in the surface-based forecast errors (Figs. 7c,d). How-
ever, increases in UH probabilities in southern Alabama

and Mississippi likely offsets the probability decreases in
Alabama and Tennessee, resulting in minimal changes to
forecast skill scores.

23Feb featured fewer LSRs across the StesoNet domain,
but StesoNet observation influence is felt across much of
the southeast United States in the ensemble forecast dis-
tributions. Two hours after forecast initialization (2000
UTC), UH probability changes in northwest Mississippi
and southwest Tennessee highlight a shift of convection
eastward, induced by the StesoNet observation assimila-
tion (Fig. 10a). This forecast probability dipole change
propagates northeastward (Figs. 10b), but only one severe
wind report was recorded in this region through the IOP
(see Fig. 10c). On the other hand, western-central Missis-
sippi featured a number of severe storms as well as reports
(e.g., Fig. 10b). However, LSRs frequently occurred in
areas of both increased and reduced forecast probabilities
(e.g., Fig. 10c), indicating relatively little skill in delineat-
ing areas with increased severe hazard threats. The lack
of skill is also manifest in nearly identical Brier Scores for
CTRL and EXP across all forecast times. Additionally,
forecast probabilities increase across northern Alabama at
later forecast hours (e.g., Fig. 10e), where only a few LSRs
were recorded (Fig. 10f).

As in the other IOPs, 14Mar features a number of LSRs
that collocate with areas of enhanced and reduced forecast
UH probabilities (Fig. 11). At 2000 UTC, LSRs in east-
ern Mississippi and western Alabama exist in between the
positive and negative probability differences (Fig. 11a),
whereas an hour later LSRs in Alabama exist primarily in
areas of increased forecast probabilities (Fig. 11b). As
storms move eastward, reports follow suit and forecast UH
probabilities do not accurately change via StesoNet data as-
similation to highlight the enhanced risks of severe storm
hazards (Fig. 11c). Increased UH probabilities in central
Alabama at 2300 UTC correspond to a reported tornado
(Fig. 11d). By 0000 and 0100 UTC, LSRs have outpaced
the forecast probabilities, suggesting storms have moved
quicker eastward than either the CTRL or EXP ensemble
forecasts suggest (Fig. 11e,f). The Brier Scores at 0000
UTC demonstrate that skill suffers due to StesoNet assim-
ilation (0.1367 to 0.1498) as LSRs occur out ahead of the
convection in the EXP forecast.

c. Predictability

For each IOP, separate forecasts are initialized at 1200
and 1800 UTC in both the CTRL and EXP prediction sys-
tems and respective forecast probabilities of UH at 2300
UTC are compared (Figs. 12-15). In 22Apr, the 1200
UTC initialized CTRL forecast produces a subjectively
poor forecast across Mississippi, Alabama, and Tennessee
(Fig. 12a); forecast UH probabilities were generally too
far west compared to LSRs. The inclusion of six more data
assimilation cycles in the CTRL prediction system helps
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to constrain the forecast probabilities across eastern Ten-
nessee and northern Alabama, better aligning the highest
forecast probabilities with LSRs (Fig. 12b), and corre-
spondingly the Brier score lowers from 0.1181 to 0.1161.
The 1200 and 1800 UTC initialized EXP forecasts at 2300
UTC are qualitatively similar to the CTRL counterparts
(c.f. Figs. 12a,b to Figs. 12c,d), with a better forecast re-
sulting when more assimilation cycles are considered (Fig.
12d). Despite the CTRL and EXP forecast similarities,
the greatest skill comes from the 1800-UTC EXP forecast
initialization (0.105 skill score).

LSRs in northern Tennessee and southern Kentucky in
the 30Apr case are completely missed by the 1200 UTC-
initialized CTRL and EXP forecasts (Fig. 13a,c), resulting
in similar forecast skill (Brier Scores of 0.1127 and 0.1125
for CTRL and EXP forecasts, respectively). Both forecasts
erroneously place a large swatch of probabilities in south-
ern Mississippi and Alabama where only one report was
recorded (Fig. 13a,c). CTRL and EXP forecasts initial-
ized six hours later consolidate probabilities in southern
Alabama while increasing the maximumn probability, and
add UH probabilities in south-central Tennesee, just south
of the Tennessee wind reports (Fig. 13b,d). The 1800
UTC-initialized EXP forecast skill is improved over the
CTRL forecast (compare 0.086 to 0.0935) in part due to
reduced false alarm and lower probabilities in northeast
and southern Alabama.

The distributions of forecast UH probabilities in 23Feb
are again more similar across CTRL and EXP simula-
tions compared to early and later-initialized forecasts (Fig.
14). CTRL and EXP forecasts placed UH probabilities
too far west in Mississippi (Fig. 14a,c), and had a relative
probability minimum near two tornado reports in northeast
Mississippi. Additionally, both forecast simulations issued
probabilities in central Tennessee where no LSRs were re-
ported. The Brier Score of the EXP forecast is slightly
smaller than the CTRL forecast, likely due to less erro-
neous probabilities in western Tennessee and slightly lower
probabilities overall. The 1800 UTC-initialized CTRL and
EXP forecasts have reduced skill, as the forecasts reduce
probabilities in MS but increase UH probabilities across
Tennessee in areas where no LSRs were reported. In
fact, more LSRs were missed by the 1800-UTC initial-
ized CTRL and EXP forecasts compared to those forecasts
initialized 6 hours prior when considering where the five
percent probability contours lie.

Qualitatively, 1800 UTC-initialized forecasts for the
14Mar case appear better than their 1200-UTC counter-
parts (c.f. Figs. 15b,d vs. 15a,c), but statistically they
verify worse; Brier Scores increase as a result of more
assimilation cycles. The decrease in skill is likely due
to increased probabilities over areas that had no LSRs,
and an expansion of lower probabilities into southern Al-
abama (Fig. 15b). Furthermore, it is still apparent that

the greatest forecast changes occur between forecast ini-
tializations and not the inclusion of StesoNet observations
(c.f. Figs. 15a,b vs. 15c,d). The inclusion of StesoNet ob-
servations for 1200 UTC-initialized forecasts has minimal
impact on the forecast distribution (Fig. 15c), slightly de-
creasing probabilities in southernMississippi and northern
Tennessee. On the other hand, adding more assimilation
cycles and running new forecasts at 1800 UTC drastically
reduces the areal coverage of forecast UH probabilities but
increases the maximum probabilities across Alabama in
both the CTRL and EXP forecasts (Figs. 15b,d).

Across the four cases, despite the inconsistent changes
to forecast skill between different forecast initializations,
the best skill came from the EXP simulations in each
case. Moreover, the intermixed small-scale forecast suc-
cesses and failures betweenCTRL andEXP further suggest
that the StesoNet observations cannot consistently improve
small-scale errors. On the other hand, StesoNet assimila-
tion always contributed to better forecast skill, reducing
Brier Scores in all cases and forecasts initialized at 1200
and 1800 UTCi.

4. Ensemble Sensitivity Analysis

As discussed previously, ESA statistically and dynami-
cally relates changes to a response metric (e.g., UH > 50
m2s−2) to prior model states, such that a prescribed per-
turbation in a forecast variable (e.g., 2-m temperature) can
be used to estimate the change in response variance (i.e.,
observation targeting). In the four IOPs examined herein,
ESA-based observation targeting fields are produced and
examined to determine where the UH forecasts are sensi-
tive to low-level thermodynamics.

In the 22Apr case, the primary targeting regions for both
2-m temperature and dewpoint exist in central Tennessee
and southern Kentucky as much as eight hours prior to
the UH forecast response, valid at 2200 UTC (Fig. 16).
These target regions appear tied to earlier convection (gray
shading in Fig. 16a) as well as the pre-convective envi-
ronment for storms later in the afternoon (e.g., Fig. 12a).
ESA does identify localized regions in northwest Alabama
in conjunction with the StesoNet domain where dewpoint
observations at early forecast times could provide signifi-
cant value towards reducing UH forecast uncertainty later
in the forecast period (Fig. 16d-f), but the regions are tem-
porally weakly correlated and generally small scale. 1800
UTC-initialized forecasts, which incorporate observations
that may have sampled these sensitive regions, are gener-
ally improved in this region of eastern Tennessee (Fig. 12).
A few pockets of target regions develop later in the fore-
cast period (2-4 hours prior to the response) in northern
Alabama and Georgia (not shown). In contrast to the near-
surface targeting fields, ESA identifies coherent regions
for hypothetical 850-hPa temperature observations along a
northeast-southwest oriented axis extending from central
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Tennessee to southwestMississippi (Fig. 16g-i) in advance
of the afternoon convection. The 850-hPa temperature tar-
geting region is identified as early as 1300UTC (not shown)
and propagates through the southeast U.S. during the full
forecast period, indicating perhaps that near-surface envi-
ronment is not the most important aspect of the forecast to
sample in order to reduce UH forecast uncertainty for this
case.

The evolution of convection in 30Apr offers a different
perspective from the 22Apr case in regards to ESA iden-
tified target regions. The majority of forecast variability
exists along the southern periphery of a QLCS in east-
ern Mississippi and western Alabama at 1900 UTC (green
contour in Fig. 17), and ESA suggests the most important
areas to sample 2-m temperature and dewpoint are well
behind the convective line at all prior forecast times (Fig.
17). This large region is likely tied to the cold pool pro-
duced by the QLCS, which is dynamically related to the
strength of convection. As in the 22Apr case, localized
target regions exist within the StesoNet domain early in the
forecast period (Fig. 17a,b), but they are not sustained at
later hours, propagating away from the observing domain.
It is likely that improved UH forecasts along the QLCS
(Fig. 13) are a result of the conventional observational
network sampling the sensitive regions. ESA-identified
targets of 850-hPa temperature observations again feature
coherent signals for propagating regions out ahead of con-
vection across Alabama (e.g., Fig. 17g,h) and tied to the
back side of the QLCS with a well-defined region propa-
gating from western Mississippi at 1500 UTC (Fig. 17g)
to western Tennessee by 1900 UTC (not shown).

As in 22Apr and 30Apr, low-level observation targeting
regions for 2-m temperature and dewpoint are relatively
scarce and small-scale in the 23Feb case (Fig. 18). Iden-
tified areas for targeting across the StesoNet domain are
temporally and spatially incoherent; a spatially coherent
target region in Louisiana at 1800 UTC (Fig. 18c) persists
throughout the forecast period and propagates northeast-
ward (not shown), but is never sampled by the StesoNet
array. A variety of target areas for both near-surface vari-
ables exist, again, behind the developing convection in
northwestern Mississippi (e.g., Fig. 18c,f), with few areas
identified in the pre-convective environment across Al-
abama and Georgia (e.g., Fig. 18a,b,d,e). ESA-identified
regions to target 850-hPa temperature observations again
are anchored to the developing convection (Fig. 18g-i),
translating with the storms in central Mississippi at 1800
UTC (Fig. 18i) to northwest Alabama by 0000 UTC (not
shown). Noisy 850-hPa temperature target regions exist
out ahead of the convection in central and southern Al-
abama as well (Fig. 18h,i), which originate over the warm
waters of the Gulf of Mexico (not shown).

Even fewer near-surface observation targeting regions
exist for 14Mar across Alabama, Tennessee, and the
StesoNet VORTEX-SE domain (Fig. 19) compared to the

other IOPs. 2-m temperature and dewpoint target areas at
1400 and 1600UTC (Fig. 19a,b,d,e) inwesternMississippi
exist primarily along and behind the developing convective
line. Pre-convective target regions develop by 1800 UTC
(Fig. 19c,f) west and southwest of the StesoNet domain.
Later in the forecast, 2-m temperature targets are enhanced
across the entire response region, while relatively no tar-
get areas are defined for 2-m dewpoint temperature (not
shown). Aloft, ESA identifies ribbons of targeting regions
for 850-hPa temperature across Arkansas over a number
of forecast hours (Fig. 19g-i). A number of localized
targeting regions for 850-hPa temperature appear tied to
individual storms across Alabama (Fig. 19h,i), which sug-
gests sampling thermodynamics aloft to improve UH fore-
casts would be particularly difficult. Similarly small target
areas exist in southern Mississippi and eastern Arkansas
(Fig. 19i), and a different region develops in northeastern
Alabama concurrent with the response time at 2100 UTC
(not shown).

5. Summary and Discussion

Four IOPs from the VORTEX-SE 2017 and Meso18-19
field campaigns were selected to evaluate the impact of
near-surface observations on convection forecasts. Texas
Tech University deployed StickNet platforms in a sta-
tionary, mesoscale network across northern Alabama and
southern Tennessee, sampling temperature, humidity, and
pressure at 10Hz frequency during each IOP (i.e., the
StesoNet). Observations across 16 and 24 stations in 2017
and Meso18-19, respectively, are retrospectively assimi-
lated with the experimental HRRRE at hourly frequency,
with forecasts initialized from these analyses and compared
against forecasts with no StesoNet data assimilation.

Across nearly all analysis times and IOPs, StesoNet ob-
servations reduce analysis errors of 2-m temperature and
dewpoint across the domain, with error reductions gen-
erally less than 0.25K. A number of the analysis RMSE
reductions are statistically significant despite their small
magnitudes. Spatially, the StesoNet observations are rou-
tinely adjusting ensemble analyses around the StesoNet
domain in early data assimilation cycles. Generally, these
mesoscale adjustments are positive, in that absolute errors
are also reduced. However, small-scale errors are present
even within some of the mesoscale environmental adjust-
ments. In a number of IOPs, these localized areas of
improved errors remain stationary, indicating the propen-
sity for the HRRRE system to be routinely biased and the
StesoNet data are consistently trying to correct these bi-
ases. In other cases, the error improvements propagate
downstream with later analyses, and subsequently impact
other portions of the domain. EXP forecasts of temper-
ature and dewpoint are improved in some instances, and
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degraded in others. The 22Apr case saw the most consis-
tent forecast improvements, while the 23Feb case exhibited
forecast degredations that were statistically significant.

When evaluating UH forecasts, EXP simulations do not
consistently shift ensemble forecast probabilities where se-
vere hazards were observed; the collocation of increased
probabilities with storm reports at some forecast hours is
replaced by increased probabilities in areas where no re-
ports existed in following hours. In many instances, EXP
forecasts reduce probabilities of UH in areas where se-
vere reports were recorded. UH probability changes are
tied to reflectivity objects, which are highly sensitive to
changing initial conditions induced by new observations.
Furthermore, forecast probability distributions of UH are
more sensitive to initialization time than the assimilation
of StesoNet observations, with the most drastic changes
in forecast distributions arising from extra assimilation
cycles and additional conventional observations. How-
ever, StesoNet assimilation always had a positive impact
on forecast skill (i.e., reducing Brier Scores) regardless of
initialization time. It should be noted as well that despite
the largest changes in forecast distributions coming from
different initializations, later-initialized forecasts did not
necessarily always have improved UH forecasts. 23Feb
and 14Mar featured poorer forecasts from 1800 UTC-
initialized forecasts, as higher probabilities were issued
by the forecast systems in areas of no reports. In general,
StesoNet observations are able to improve the mesoscale
environment preceeding and during deep convection, but
these improvements do not translate to storm-anchored UH
probabilities.

Ensemble sensitivity analysis-based observation target-
ing methods applied to the CTRL ensemble forecasts ini-
tialized at 1200 UTC reveal that targeting regions of 2-m
temperature and dewpoint across the StesoNet domain are
infrequent and short-lived. At most, target regions propa-
gate through the StesoNet domain in less than three hours
for these cases. Weak impact of StesoNet observations
on forecast UH distributions may be partially explained
by ESA-identified target regions that were infrequent over
the StesoNet domain. Generally, there was a lack of ESA-
identified targeting regions in the pre-convective environ-
ment, andwhen pre-convective target areas were identified,
they rarely occurred across the StesoNet domain. Fur-
thermore, the strongest signal of near-surface target areas
occured behind the convection, dynamically tied to the
cold pools being produced by the convection. ESA was
also applied to evaluate targeting regions aloft for 850-hPa
temperature, which identified spatially and temporally co-
herent regions directly tied to the developing convection.
These results indicate that near-surface sampling may not
have been the most important facet of the environment to
improve the convection forecasts, and sampling the en-
vironment aloft may have yielded additional forecast im-
provements. Additionally, the assimilation of conventional

observations in later assimilation cycles was likely suffi-
cient to improve forecasts since these observations sampled
sensitive regions.

The inconsistent storm-scale improvements in both near-
surface environmental fields as well as storm-centric UH
forecasts could likely be addressed by considering improve-
ments to the data assimilation configuration. Planned
future work will investigate to what extent additional
StesoNet observations assimilated per cycle (e.g., ten ob-
servations over the assimilation window) could enhance
storm-scale forecasts as well as the impact of sub-hourly
data assimilation. Alternative UH-forecast verification
methods should also be explored, since it is difficult to
accurately project hourly forecast skill with limited LSRs.
Future efforts may benefit from utilizing sub-daily or
hourly practically perfect (PPER) analyses (Gensini et al.
2020) to verify forecasts. Even though PPER fields are
similarly generated from LSRs, they provide a probabilis-
tic baseline to verify probabilistic forecasts, which may be
a more appropriate measure of forecast skill compared to
Brier Scores.

Through the analysis of these four IOPs, it is evident
that a mesoscale, portable array of near-surface sampling
has the potential to impact and improve convection fore-
casts within the southeast United States. However, even
though there were reductions in near-surface analysis and
forecast errors due to assimilating StesoNet observations,
it is plausible that the near-surface environment was not
the most sensitive area for these particular cases. The
evolution of the planetary boundary layer (PBL), includ-
ing the transportation of heat, moisture, and momentum,
is a critical factor in the development and intensification
of convection, and it is often insufficiently modeled due to
the small-scale processes inherent within (e.g., Cohen et al.
2015). It makes sense that in situ observations above the
surface and within the PBL, where the regular observing
network is particularly lacking, would provide substantial
benefit to convection forecasts within this geographical re-
gion. Additionally, these IOP case studies represent only a
subsample of events, and clearly do not fully determine the
value of StesoNet observations for southeast United States
convection events. Furthermore, a larger set of convective
events and forecast cases would allow for a more robust as-
sessment of forecast reliability and resolution, which can
only be gleaned from a sufficiently large set of forecasts.
Continued deployment of portable mesoscale networks in
future VORTEX-SE field campaigns (e.g., the Propaga-
tion, Evolution, and Rotation in Linear Systems (PERiLS)
project) will allow for a more exhaustive evaluation of the
utility of such a network in the southeast as well as other
areas of the country.
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Table 1. Root mean squared error differences between CTRL and EXP ensemble analyses of 2-m temperature from 1000 to 1800 UTC for each
case calculated across 33-36◦ N and 83-90◦ W. Bolded differences are statistically significant at the 95% confidence level using bootstrapping with
1,000 re-samples of each analysis’ sample error distribution. Negative values represent lower errors in EXP simulations.

Hour (UTC)

Cases 10 11 12 13 14 15 16 17 18
22Apr -0.03 -0.05 -0.05 -0.05 -0.03 -0.02 -0.05 0.01 -0.08
30Apr -0.02 -0.03 -0.02 -0.02 -0.03 -0.03 -0.03 -0.13 -0.33
23Feb 0.01 -0.05 -0.11 -0.13 -0.19 -0.18 -0.15 -0.05 0.0
14Mar -0.03 -0.04 -0.08 -0.08 -0.08 -0.07 -0.05 -0.07 0.01

Table 2. Root mean squared error differences between CTRL and EXP ensemble analyses of 2-m dewpoint temperature from 1000 to 1800
UTC for each case calculated across 33-36◦ N and 83-90◦ W. Bolded differences are statistically significant at the 95% confidence level using
bootstrapping with 1,000 re-samples of each analysis’ sample error distribution. Negative values represent lower errors in EXP simulations.

Hour (UTC)

Cases 10 11 12 13 14 15 16 17 18
22Apr 0.01 -0.06 -0.04 -0.05 -0.03 -0.06 -0.1 -0.05 -0.2
30Apr 0.02 0.01 -0.03 -0.11 -0.14 -0.07 0.06 -0.12 -0.07
23Feb -0.01 -0.01 -0.12 -0.16 -0.23 -0.15 -0.05 -0.02 0.05
14Mar 0.0 -0.03 0.01 0.02 -0.01 0.0 -0.1 -0.12 -0.1

Fig. 1. An example deployment of a StesoNet station with accompanying instruments, data acquisition system, batteries, and solar panel labeled.
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Fig. 2. Model domains of the HRRRE prediction system across the contiguous United States and model terrain (m, filled contours). The red box
approximates the location of the StesoNet domain in northern Alabama and southern Tennessee.
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Fig. 3. Ensemble mean analysis differences calculated as EXP - CTRL of (left) 2-m temperature and (right) 2-m dewpoint temperature (K,
shaded) at (a)-(b) 1200, (c)-(d) 1400, (e)-(f) 1600, and (g)-(h) 1800 UTC, respectively, for the 22Apr case. Colored dots represent the change in
ensemble mean absolute error (K) between EXP and CTRL at surface observing stations, with negative values indicating a reduction in error in
the EXP analysis and positive values an increase in error. The average change in absolute error at an analysis time across the mapped domain is
denoted in the lower right corner. Circles with bolded outlines depict StesoNet observing sites.
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Fig. 4. As in Fig. 3, but for the 30Apr case.
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Fig. 5. As in Fig. 3, but for the 23Feb case.
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Fig. 6. As in Fig. 3, but for the 14Mar case.
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Fig. 7. Domain-wide ensemblemean analysis and forecast RMSEdifferences (EXP-CTRL) of (left) 2-m temperature (K) and (right) 2-m dewpoint
temperature (K) for (a)-(b) 22Apr, (c)-(d) 30Apr, (e)-(f) 23Feb, and (g)-(h) 14Mar cases calculated across 33-36◦ N and 83-90◦ W. Shading around
each line represents a 95% confidence interval obtained via boostrapping with 1,000 resamples of the paired sample error distributions from each
forecast. Stars spanning each colored line delineate when the RMSE differences between EXP and CTRL are statistically significant.
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Fig. 8. Differences between 22Apr EXP and CTRL ensemble forecast probabilities (EXP - CTRL) of 1–6 kmmaximumUH exceeding 50m2s−2

over the previous hour initialized at 1800 UTC and valid at (a)-(f) 1900, 2000, 2100, 2200, 2300, and 0000 UTC (forecast hours 1-6). Denoted in
the lower right corner are the Brier Scores for each respective forecast. Local storm reports of severe wind, hail, and tornadoes within the last hour
are denoted with blue squares, green triangles, and red circles, respectively. Storm reports are obtained from an archive on the Iowa State University
Iowa Environmental Mesonet website (https://mesonet.agron.iastate.edu/request/gis/lsrs.phtml, accessed 28 April 2020).

Fig. 9. As in Fig. 8, but for the 30Apr case at hours (a)-(f) 2000, 2100, 2200, 2300, 0000, and 0100 UTC.
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Fig. 10. As in Fig. 8, but for the 23Feb case at hours (a)-(f) 2000, 2200, 0000, 0200, 0400, and 0600 UTC.

Fig. 11. As in Fig. 9, but for the 14Mar case.
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Fig. 12. Probabilistic ensemble forecasts of 1–6 km UH exceeding 50 m2s−2 over the previous hour from (a)-(b) the CTRL and (c)-(d) EXP
ensemble systems. Forecasts are initialized at (left) 1200 UTC and (right) 1800 UTC valid at 2300 UTC for the 22Apr case. Local storm reports
within the last hour of severe wind, hail, and tornadoes are denoted with blue squares, green triangles, and red circles, respectively. Storm reports are
obtained from an archive on the Iowa StateUniversity IowaEnvironmentalMesonetwebsite (https://mesonet.agron.iastate.edu/request/gis/lsrs.phtml,
accessed 28 April 2020).
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Fig. 13. As in Fig. 12, but for the 30Apr case.
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Fig. 14. As in Fig. 12, but for the 23Feb case.
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Fig. 15. As in Fig. 12, but for the 14Mar case.
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Fig. 16. Expected ensemble variance reduction (i.e., ESA targets) of UH response (m4s−4, color shading) due to hypothetical assimilation
of (a)-(c) 2-m temperature, (d)-(f) 2-m dewpoint temperature, and (g)-(i) 850-hPa temperature at (a),(d),(g) 1400, (b),(e),(h) 1600, and (c),(f),(i)
1800 UTC 22 April 2017 calculated from the 1200-UTC initialized CTRL ensemble forecast. Gray shading is the ensemble probability matched
mean composite reflectivity greater than 40 dBZ. The green contour delineates the UH response region valid at 2200 UTC. Black dots denote
geographical areas where the ensemble sensitivity passes a statistical significance test demonstrating the regression slope between initial condition
and response variables is greater than zero with 95% confidence.
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Fig. 17. As in Fig. 16, but for the 30Apr case. The response is valid at 1900 UTC and ESA-based targets are valid at (a),(c),(g) 1300, (b),(e),(h)
1500, and (c),(f),(i) 1700 UTC.
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Fig. 18. As in Fig. 16, but for the 23Feb case. The response is valid at 0100 UTC 24 February 2019 and ESA-based targets are valid at (a),(c),(g)
1400, (b),(e),(h) 1600, and (c),(f),(i) 1800 UTC.
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Fig. 19. As in Fig. 16, but for the 14Mar case. The response is valid at 2100 UTC and ESA-based targets are valid at (a),(c),(g) 1400, (b),(e),(h)
1600, and (c),(f),(i) 1800 UTC.


